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Introduction
Intake of broccoli sprouts, a rich source of the 

glucosinolate glucoraphanin, has been associated 

with decreased incidence, multiplicity, and tumor 

growth in animal cancer models.1-3 In 1992, Paul 

Talalay, MD, and colleagues at Johns Hopkins 

University identified the isothiocyanate, sulfora-

phane, a biologically active metabolite of glucora-

phanin, as the compound in broccoli responsible 

for many of its health benefits.4 Since that time, 

more than 500 studies have been conducted on the 

mechanisms and biological activity of sulforaphane 

and its precursor, glucoraphanin.5 Glucoraphanin, 

also referred to as sulforaphane glucosinolate 

(SGS), is the most potent naturally-occurring 

inducer of phase 2 detoxification enzymes4,6 and is 

an indirect, long-acting antioxidant.7-9

Sulforaphane also exhibits broad-spectrum 

antimicrobial activity against numerous gram-

positive and -negative bacteria,10 most notably 

Helicbacter pylori.11 In addition, sulforaphane 

possesses anti-inflammatory activity; it inhibits 

cytokine production in preclinical and clinical 

studies.12-14 Sulforaphane’s multiple molecular 

targets and promising early research have lead to 

15 clinical trials currently underway to assess its 

effects on various cancers, cardiovascular disease, 

upper airway inflammation, radiation dermatitis, 

and vascular health.15

Biochemistry
Glucoraphanin is a glucosinolate found in high 

concentrations in the Mariner variety of broccoli 

(Brassica oleracea italica) and other members of the 

Brassica family.16 All glucosinolates are comprised 

of a basic structure consisting of a β-D-thioglucose 

group, a sulphonated oxime group, and an amino 

acid-derived side chain.17 Glucosinolates must be 

enzymatically hydrolyzed to their associated 

isothiocyanate to become active.18 Sulforaphane 

(molecular formula C
6
H

11
NOS

2
) is the biologically 

active isothiocyanate produced when glucora-

phanin is metabolized by the enzyme myrosinase 

(Figure 1).19

Pharmacokinetics
Glucoraphanin in broccoli is enzymatically 

hydrolyzed by myrosinase, an enzyme compart-

mentally separated from glucoraphanin in plant 

cells. Myrosinase is released when the plant is 

chewed or processed.20 Heating broccoli partially 

denatures and inactivates myrosinase, leaving the 

glucoraphanin at least partially intact. In the gut of 

healthy individuals any intact glucoraphanin is 

then metabolized by myrosinase-producing 

bacteria.21 Because broccoli sprout or seed extracts 

taken orally contain no myrosinase to hydrolyze 

the glucoraphanin, transformation to sulforaphane 

must be carried out by the gut microflora.22 In 

individuals with compromised intestinal flora and 

low myrosinase activity, it is unclear if glucora-

phanin exerts the same systemic effects as 

observed in individuals with normal intestinal 

flora.23

Research in humans indicates approximately 74 

percent of sulforaphane from broccoli extract is 

absorbed in the jejunum.24 After absorption, 

sulforaphane is metabolized via the mercapturic 

acid pathway.25,26 Although this pathway involves a 

complex interplay between the liver, small 
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intestine, and kidneys, the liver is thought to be 

the primary site of activity and is the site of 

sulforaphane conjugation to glutathione. 

Sulforaphane-glutathione conjugates are subse-

quently converted to cysteinyl-glycine, cysteine, 

and N-acetylcysteine conjugates in the kidneys or 

gut and then cycled back to the liver for acetylation. 

Of these conjugates, sulforaphane-N-acetylcysteine 

is the most prevalent.21

Upon absorption into the bloodstream, sulfora-

phane readily accumulates in tissue and exerts 

anticarcinogenic effects. In one human study, a 

single 200 μM dose of sulforaphane from broccoli 

sprouts yielded peak plasma concentrations 

between 0.943 and 2.27 μmol/L at one hour post 

feeding; the half life of sulforaphane was 1.77 ± 

0.13 hours.27 A pilot study in eight healthy women 

undergoing reduction mammoplasty demonstrated 

a broccoli sprout extract containing 200 μM 

sulforaphane given orally one hour prior to tissue 

removal resulted in average tissue uptake of 1.45 ± 

1.12 pmol/mg in the left breast and 2.00 ± 1.95 

pmol/mg in the right breast. Both detoxification 

enzyme genes for NADH quinone reductase 

(NQO1) and heme oxygenase-1 (HO-1) were 

measureable in the excised breast tissue, indicating 

cancer blocking activity after sulforaphane con-

sumption.28 Research in mice has also demon-

strated colonic tissue uptake of sulforaphane after 

oral dosing, accompanied by a reduction in 

adenoma formation.29 Excretion of sulforaphane 

conjugates in the urine is via first-order kinetics 

with metabolites being cleared from the body 

within 72 hours of dosing.27,30

Mechanisms of Action
Indirect Antioxidant and Carcinogen Detoxification

Sulforaphane is a pleotropic molecule and a 

potent inducer of numerous nuclear factor ery-

throid-derived 2 (Nrf2)-dependent phase 2 

enzymes involved in xenobiotic detoxification. 

Enzymes induced by sulforaphane include the 

antioxidant response element (ARE) targets: 

NQO1,4 γ-glutamylcysteine synthetase (GGCS),31

HO-1,32 glutathione transferases (GST),33 glucuro-

nosyl transferases,34 and epoxide hydrolases.35

These enzymes are regulated by the Nrf2 transcrip-

tion factor, which upon release from the Kelch-like 

ECH-associated protein 1 (KEAP1), binds to ARE 

sites in the enzymes’ genes and upregulates 

carcinogen detoxification.36,37 Other Nrf2-mediated 

effects of sulforaphane include inhibition of LDL 

oxidation,38 inhibition of dopamine oxidation,39

improvement of age-related TH1 immunity via 

restoration of redox equilibrium,40 and reduction of 

oxidative stress caused by electrophilic carcino-

gens.41 Sulforaphane also modulates phase 1 

cytochrome p450 (CYP) enzymes by decreasing 

CYP1A1, CYP2B1/2, and CYP3A4 activity, thereby 

inhibiting the activation of procarcinogens and 

preventing the generation of DNA adducts during 

the initiation stage of cancer.42 The overall net 

effect on phase 1 and 2 enzymes is an increase in 

metabolism and detoxification of chemical 

carcinogens.43

Other Chemopreventive Mechanisms 
Sulforaphane exerts a direct effect on human 

cancer cells post-initiation. Research has demon-

strated sulforaphane directly inhibits cell cycle 

progression, primarily via G
2
M arrest,44,45 and 

induces apoptosis of cancer cells via caspase 

Figure 1. Glucoraphanin Metabolism
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activation, resulting in reduced tumor weight and 

volume both in vitro and in animal cancer 

models.45,46 In human tissue samples, reductions in 

histone acetylation correlate with increased cancer 

grade and risk of cancer recurrence.47 Studies show 

sulforaphane directly inhibits histone deacetylase 

(HDAC), which correlates with induction of G
2
M

cell cycles arrest and apoptosis.48 Sulforaphane also 

appears to upregulate apoptosis in cancer cells by 

modulating nuclear factor kappaB (NFκB) activity49

and increasing mitochondrial reactive oxygen 

species, causing disruption of mitochondrial 

membrane potential and release of cytochrome C.50

And finally, sulforaphane potently inhibits angio-

genesis and metastasis of tumors by reducing 

microcapillary formation and inhibiting cell 

migration.51 These effects were associated with 

down regulation of angiogenesis factors, including 

vascular endothelial growth factor (VEGF).52 Figure 

2 summarizes the tumor inhibition effects of 

sulforaphane.

Miscellaneous Mechanisms
Sulforaphane’s anti-inflammatory effects have 

been attributed to inhibition of pro-inflammatory 

signaling molecules and cytokines13 such as NFκB, 

prostaglandin E2, and nitric oxide.12 Sulforaphane 

also appears to reduce upper airway inflammation 

via increased phase 2 enzyme detoxification of air 

pollutants and pollen, apparently via decreased 

cellular oxidative stress, inhibition of inflamma-

tory cytokine production, and decreased tissue 

inflammation.14 In vitro research has also shown 

sulforaphane inhibits the production of interleukin 

and tumor necrosis factor-alpha (TNF-α) in 

rheumatoid T cells.53 Sulforaphane exhibits 

broad-spectrum antimicrobial activity, inhibiting 

the growth of several gram-positive and -negative 

bacteria, including E. coli 0157:H7, Helicobacter 

pylori, Salmonella, Shigella, Staphylococcus aureus, 

Streptococcus pyogenes, Pseudomonas aeruginosa, and 

Cryptococcus neoformans.10,11
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Figure 2. Sulforaphane Mechanisms of Tumor Inhibition
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Clinical Indications
Cancer 
Preclinical and Animal Research

Numerous in vitro studies in human colon, 

leukemia, pancreatic, lung, and skin cancer cell 

lines have demonstrated sulforaphane’s inhibitory 

effects on cell cycle arrest,45,54-56 and research in 

human bladder57 and prostate46 cell lines has 

shown it increases apoptosis. Sulforaphane’s ability 

to disrupt tubulin polymerization and inhibit 

mitosis has also been demonstrated in animal 

models of breast cancer.58,59 Inhibition of histone 

deacetylase and increased apoptosis in human 

colon, prostate, and kidney cell lines has also been 

reported.48,60,61

In a pilot study involving three healthy volun-

teers (ages 18-55), a single daily dose of 68 g 

BroccoSprouts® (approximately 105 mg sulfora-

phane) significantly inhibited HDAC activity in 

peripheral blood mononuclear cell cultures three 

and six hours following consumption, suggesting 

sulforaphane may induce cell cycle arrest and 

apoptosis in humans.62

In mice with experimentally induced prostate 

cancer, 6 μmol sulforaphane by oral gavage three 

times weekly from age six weeks onward decreased 

pulmonary metastasis incidence by 50 percent and 

multiplicity by 63 percent. Prostate tissue samples 

revealed decreased cellular proliferation and 

increased apoptosis when compared to control 

mice.63 Tumor necrosis factor-related apoptosis-

inducing ligand (TRAIL) induces apoptosis in a 

wide variety of cancer cells. In a mouse model of 

prostate cancer, tumor-bearing male mice were 

given sulforaphane (40 mg/kg), TRAIL (15 mg/kg) 

+ sulforaphane (40 mg/kg), TRAIL alone (15 mg/

kg), or vehicle at varying intervals for four weeks. 

Although either sulforaphane or TRAIL alone 

decreased tumor growth, the combination of 

sulforaphane and TRAIL was more effective, 

suggesting sulforaphane may have a potentiating 

effect on TRAIL. The sulforaphane-TRAIL combina-

tion also activated several caspases and was more 

effective at inhibiting markers of angiogenesis and 

metastasis than either agent alone.64 Sulforaphane 

given to female breast cancer-bearing, non-obese, 

diabetic/severe combined immunodeficient (NOD/

SCID) mice at a daily dose of 50 mg/kg for two 

weeks eliminated breast cancer stem cells in vivo

and halted tumor growth.65

Clinical Studies
The first direct observation of sulforaphane’s 

inhibitory effect on cancer in humans was 

observed in 200 healthy adults (ages 25-65) from 

the Jiangsu Province of China, a region with a high 

rate of hepatocellular carcinoma due to excessive 

dietary aflatoxin exposure and chronic hepatitis B 

infection. The primary end-point of this blinded, 

placebo-controlled trial was to determine if 

drinking daily broccoli sprout infusions (containing 

400 μmol glucoraphanin) for two weeks could 

reduce urinary excretion of aflatoxin DNA adducts 

– indicators of DNA damage. A highly significant 

inverse association was observed for excretion of 

dithiocarbamates (isothiocyanate metabolites of 

glucoraphanin) and aflatoxin-DNA adducts in 

individuals treated with broccoli sprout infusions. 

An average of approximately 12 percent (range 

1-45 percent) of the administered dose of broccoli 

sprout glucoraphanin was excreted as dithiocarba-

mates, with significant variability in excretion rates. 

The reason for this variation may be due to 

differences in enteric microflora composition, some 

individuals possibly having less myrosinase. 

Genetic polymorphisms of the glutathione 

S-transferase enzyme involved in glucoraphanin 

metabolism may also be partially responsible.66

Cardiovascular Disease and Hypertension
Glucoraphanin and sulforaphane afford cardio-

vascular protection via their antioxidant and 

anti-inflammatory properties, resulting in reduced 

oxidative stress, improvement in lipid profiles, and 

decreased blood pressure. A phase 1 trial involving 

12 cigarette smokers (six men and six women) 

investigated whether consuming 100 g fresh 

broccoli sprouts daily (glucoraphanin/sulforaphane 

content not specified) for one week impacted 

oxidative stress markers and cholesterol values. 

Cholesterol levels, plasma amino acids, natural 

killer cell activity, serum coenzyme Q10, and 

markers of oxidative stress – plasma phosphatidyl-

choline hydroperoxide (PCOOH), urinary 8-iso-

prostane, and urinary 8-hydroxydeoxyguanosine 

– were measured pre- and post-treatment. After 

only one week of broccoli sprout intake, all subjects 

demonstrated decreased serum total- and LDL-

cholesterol levels and reductions in all oxidative 

stress markers; females also had significantly 

increased HDL-cholesterol levels.38

Animal research supports these findings. Studies 

on male and female spontaneously hypertensive 

rats on a glucoraphanin-enriched diet (equivalent 

to 27.3 μmol sulforaphane per g dried sprouts) 
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showed decreased oxidative stress, lower blood 

pressure, and less renal and central nervous system 

inflammation in kidney and spinal cord tissue 

when compared to animals on glucoraphanin-free 

diets.67,68

Upper Airway Inflammation
Airborne diesel exhaust particles appear to 

exacerbate lung and cardiovascular diseases by 
inducing oxidative stress.69 Sulforaphane inhibits 

cytokine production in human airway epithelial 

cells exposed to diesel extract via induction of 

phase 2 enzyme genes NQO1 and glutathione-S-

transferase M1.13 In the first study to demonstrate 

oral sulforaphane upregulation of phase 2 antioxi-

dant enzyme expression in the human airway, Reidl 

et al administered BroccoSprouts® homogenates 

(BSH) to 57 healthy adult volunteers (average age 

34) in a single-blind, dose-escalation (25, 50, 75, 

100, 125, 150, 175, and 200 g), three-day trial. 

Analysis demonstrated a sulforaphane content of 

0.283 μmol/mL BSH – the 175- and 200-mg doses 

delivering 89 and 102 μmol sulforaphane, respec-

tively. Control subjects received a 200 g dose of 

alfalfa sprouts, containing negligible amounts of 

sulforaphane. Baseline nasal lavage and blood 

samples were collected from all participants and 

assessed for phase 2 enzyme expression. Subjects 

were assessed again one day after final dosing. 

Significant increases in glutathione-S-transferases, 

HO-1, and NQO1 were observed with the 200-g 

BSH dose compared to placebo. All doses were well 

tolerated and without serious side effects, although 

four subjects reported mild gastrointestinal events 

that did not require treatment.14

Helicobacter pylori Infection
The role of Helicobacter pylori in development of 

stomach cancer is well established.70,71 Animal 

research shows sulforaphane given to human 

gastric xenograft-bearing mice at a daily dose of 

1.33 mg (equivalent to a 100-mg daily dose in 

humans) is strongly bacteriocidal and eradicates H.

pylori.72 Yanaka et al subsequently demonstrated 

glucoraphanin-rich three-day old broccoli sprouts 

(6 μmol glucoraphanin/g) given to H. pylori-

infected female mice reduced gastric bacterial 

colonization, decreased mucosal TNF-α and 

interleukin-1β expression, decreased gastric 

inflammation, and prevented gastric atrophy. 

These effects were not observed in Nrf2-depleted 

mice, indicating the important role of Nrf2-

dependent phase 2 enzyme induction by 

sulforaphane.73

In a human arm of the Yanaka study, 48 H.

pylori-infected patients were divided into a broccoli 

sprout treatment group (n=25) or an alfalfa sprout 

placebo group (n=23). Those in the broccoli sprout 

group received 70 g sprouts daily, containing 6 

μmol glucoraphanin/g, for eight weeks. 

Glucoraphanin feeding decreased breath test 

urease levels, H. pylori antigen, and pepsinogens I 

and II – markers of gastric colonization and 

inflammation. These results indicate broccoli 

sprouts as a source of glucoraphanin improve H.

pylori infection sequelae and enhance chemopro-

tection from H. pylori-induced stomach tumors.73

Two other clinical trials demonstrated the bacterio-

cidal74 and chemoprotective properties of sulfora-

phane in individuals with H. pylori infection.75

Gilbert’s Syndrome
Gilbert’s syndrome is characterized by genetic 

polymorphisms in the UDP-

glucuronosyltransferase (UGT) enzymes, the 

primary one being UGT1A1*28, which is involved 

in bilirubin glucuronidation. UGT polymorphisms 

can manifest as benign unconjugated hyperbilirubi-

nemia, associated with reduced hepatic conjuga-

tion, and may increase cancer risk in this popula-

tion.76 In an observational study of 191 nonsmok-

ing volunteers (ages 19-40) consuming 0-4 serv-

ings of cruciferous vegetables daily, there was a 

statistically significant inverse association between 

the UGT1A1 gene/Cruciferae interaction and total, 

direct, and indirect bilirubin measurements. 

Sulforaphane from cruciferous vegetables has been 

shown to induce UGT1A1 activity, resulting in 

greater bilirubin conjugation and clearance and 

possibly mitigating the increased cancer risk.77

Rheumatoid Arthritis
Rheumatoid arthritis (RA) involves a tumor-like 

expansion of the synovium characterized by 

hyperproliferation of synoviocytes, infiltration of T 

and B cells, and increases in interleukin (IL) -6, -8, 

and -17. RA treatment involves suppression of 

synoviocyte proliferation and cytokine produc-

tion.78 Due to the “tumor-like” attributes of 

synoviocytes and their role in RA progression, 

Kong et al investigated the effect of sulforaphane 

on synoviocyte apoptosis in a mouse model of RA. 

Sulforaphane was administered peritoneally to 

male mice at concentrations of 12.8, 63.8, and 

318.8 mg/mL/kg every other day for five weeks. 

Sulforaphane decreased synoviocyte survival up to 

51 percent compared to baseline, significantly 

decreased IL-17 and TNF-α, and repressed the 
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proliferative response in polymorphonuclear cells 

to baseline levels. Histological examination 

revealed less inflammation, synovial hyperplasia, 

and bone destruction in mice treated with sulfora-

phane compared to the control group.53

Macular Degeneration
Oxidative stress in the retinal pigmented 

epithelial (RPE) cell layer is associated with 

age-related macular degeneration, the leading 

cause of blindness in the elderly.79 In vitro and 

animal research demonstrates that sulforaphane 

protects RPE cells from photo-oxidative damage; 

the degree of protection correlated with basal 

levels of glutathione and NADH quinone 

reductase.9,80

Neurological Conditions
In vitro and animal research indicates sulfora-

phane treatment of various neuronal cell lines 

(neuroblastoma, astrocyte, and primary cortical 

neurons) protects against neuronal injury caused 

by oxidative stress and inflammation. This is 

accomplished via activation of Nrf2/ARE-mediated 

detoxification enzymes and results in increased 

intracellular glutathione levels and reduced rates of 

apoptosis.81-84 These studies indicate sulforaphane 

may protect against the types of neuronal injury 

found in Parkinson’s and Alzheimer’s diseases.

Side Effects and Toxicity
Several studies have been conducted to assess 

the safety of sulforaphane in humans. A random-

ized, placebo-controlled, double-blind study 

showed broccoli sprout extracts were without 

significant side effects at doses of 25 and 100 μmol 

glucoraphanin for seven days.85 Another random-

ized, placebo-controlled study involving 200 

healthy adults consuming broccoli sprout infusions 

daily for two weeks (400 μmol or approximately 

175 mg glucoraphanin) showed no adverse 

effects.66 In a dose escalation safety study, broccoli 

sprout extracts containing sulforaphane doses as 

high as 340 nmol were topically applied three 

consecutive times to forearm skin. Researchers 

reported significant induction of phase II enzyme 

activity in biopsied tissue without any adverse 

reactions.86

Dosage
Based on available research, typical dosage for 

broccoli sprout and seed extracts is 50-100 mg 

sulforaphane glucosinolate daily in divided doses.

Warnings and Contraindications
Sulforaphane and glucoraphanin from broccoli, 

broccoli sprouts, and broccoli seeds has a good 

safety profile with no known contraindications or 

drug interactions.
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